If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7u^2-35=0
a = 7; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·7·(-35)
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{5}}{2*7}=\frac{0-14\sqrt{5}}{14} =-\frac{14\sqrt{5}}{14} =-\sqrt{5} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{5}}{2*7}=\frac{0+14\sqrt{5}}{14} =\frac{14\sqrt{5}}{14} =\sqrt{5} $
| -61=8(12w+42)-w | | 0.3(n-5)=0.4-0.2(-n-7) | | 4x+1x=20 | | -6+r/2=3 | | y/5-5=-3 | | (z/4)+3=5-(z/4) | | 18x2+12x+1=0 | | 3z-2=(-26) | | 28-6a=10 | | y-13/4=3 | | x=3(3)+9 | | 12x+4-24x=52 | | 6x(23-17)=6x | | 8n=10+14 | | 0.3(n-7)=0.4-0.2(-n-7) | | 2x^-x=3 | | -2a-8=(-4) | | 35/7n=15/28;n= | | 0.04x=0.04x | | 2x*88=2 | | 8y−7=23−2y | | (6+y)(3y-2)=0 | | 2(x−8)+11=2x−5 | | 3=r/9-3 | | -4=k(2) | | -3(x-4)=2x-3 | | 2n^2=50n | | 5x-2+3x=6(3x-2)+5 | | 5-3x=6-4x+3 | | 7x-8+5x-8=88 | | -8(a-4)+3a=2(4a+9)=1 | | 1/2x+1/3=4(5/6x-3) |